Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ZENODO
Conference object . 2017
Data sources: Datacite
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ZENODO
Conference object . 2017
Data sources: Datacite
ZENODO
Other literature type . 2017
Data sources: ZENODO
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Smart Cities And Cultural Heritage Protecting Historical Urban Environments From Climate Change

Authors: Marsella, Stefano;

Smart Cities And Cultural Heritage Protecting Historical Urban Environments From Climate Change

Abstract

The number of natural disasters is growing. A considerable number of them derives directly from climate changes and generates a deep impact on cultural heritages. As a result, the need for solutions able to cope with uncertain weather conditions and increased natural disasters is getting urgent. STORM is a European Research and Innovation Action co-funded in the H2020 framework that is aimed at creating intelligent tools which will gather data from libraries, sensors and crowd-sensing techniques in order to enable cultural heritage stakeholders (e.g., the organisations which have to manage the sites) to implement the most appropriate actions in the prevention, response and recovery phases of emergencies which could impact on cultural heritages. More specifically, the project aims at addressing those risks deriving from climate change, which in the near future is going to worsen most of the present hazards, as flash floods, heat waves and forest fires. As such, the approach adopted by the project is particularly fit for the purpose of being integrated with smart city systems which are increasingly growing in number and variety. Even if safety issues are not considered central in the overall concept of smart city, it’s plain that the huge quantity of data that can be gathered and processed in any future STORM-like urban cultural heritage compound should feed into the available smart city systems. On the other way round, the mass of data produced or processed by smart city systems have the potential to impact dramatically on emergency management and prevention activities to be implemented by cultural heritage stakeholders. The paper will illustrate the approach that the STORM project is adopting to mitigate the impact of climate changes on cultural heritages and the mutual benefits which could derive from an integration of the STORM outcomes with smart cities systems through the use of standard emergency data exchange protocols and an integrated framework aimed at improving existing processes related to the three identified areas: Prevention, Response and Policy

Keywords

climate change, smart cities, interoperability, cultural heritage

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 51
  • 51
    views
    Data sourceViewsDownloads
    ZENODO510
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
0
Average
Average
Average
51