Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SolarPACES Conferenc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
SolarPACES Conference Proceedings
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
SolarPACES Conference Proceedings
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

HelioSoil: A Python Library for Heliostat Soiling Analysis and Cleaning Optimization

Authors: Giovanni Picotti; Michael E. Cholette; Ye Wang; Cody B. Anderson; Theodore A. Steinberg; John Pye; Giampaolo Manzolini;

HelioSoil: A Python Library for Heliostat Soiling Analysis and Cleaning Optimization

Abstract

Soiling losses and their mitigation via cleaning operations represent important challenges for Solar Tower (ST) plants. Yet soiling losses are not well considered in existing CSP software, likely due to the lack of tools for soiling estimation and cleaning optimization. In this paper, a Python-based heliostat soiling library, called HelioSoil, is introduced which allows for the assessment of heliostats’ soiling state and the optimization of the solar field cleaning schedule to maximize plant profit. The library is freely available on GitHub under a LGPL license, which enables extensions via other Python APIs (e.g. CoPylot) and integration with other CSP plant simulation packages to consider soiling losses. This latter capability is demonstrated in this study through an LCOE assessment and cleaning optimization of a hypothetical Australian ST plant with SolarTherm. Hence, HelioSoil provides the CSP community with a package for soiling assessment and cleaning resource optimization, which can be integrated with available software for high-level, long-term simulations. HelioSoil facilitates the inclusion of soiling and cleaning costs in CSP economics and ultimately aim to de-risk the deployment of ST plants.

Keywords

Soiling, Physics, QC1-999, Cleaning, Reflectance, CSP, Heliostats, Python

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold