Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SolarPACES Conferenc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
SolarPACES Conference Proceedings
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
SolarPACES Conference Proceedings
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Calcium Manganite Based Materials for Thermochemical Energy Storage in High Temperature Solar Thermal Plants: Materials Screening

Authors: Chrysa Pagkoura; Georgia Kastrinaki; George Karagiannakis;

Calcium Manganite Based Materials for Thermochemical Energy Storage in High Temperature Solar Thermal Plants: Materials Screening

Abstract

The urgent need for sustainable energy supply requires maximum exploitation of renewable energy sources. The latter, being of intermittent nature, need to be coupled with efficient energy storage. Solar-thermal power-plants are inherently compatible with thermal storage, which is a cost-efficient method of storing energy for later use but the field is currently dominated by sensible heat molten salts used as heat storage media but with a maximum operating temperature of about 560oC. Certain ceramic materials, able to induce reversible reduction-oxidation reactions under air flow, are promising alternatives to molten salts because they can withstand much higher temperatures (>1000oC) and thus can be integrated with high-efficiency air-Brayton thermodynamic cycles. At the same time the chemical energy stored/released during such reduction-oxidation reactions can boost energy storage density by up to 10 times cf. sensible only concepts. In this framework, Ca-Mn-based perovskite compositions were demonstrated to function effectively as energy storage materials. The current work offers insights on material synthesis parameters to achieve relatively high purity Ca-Mn-based compositions and subsequently optimize their redox performance in the course of a preliminary 5-cycle campaign. Moreover, the occurring structural transitions and their corresponding heat effects are also discussed and elaborated upon. This study is the first step towards the, currently in progress, process of synthesising – at multi kg scale – and shaping these compositions into extruded honeycomb-like monolithic structures for subsequent future application in lab- and pilot-scale high temperature thermochemical energy storage systems.

Keywords

Physics, QC1-999, Redox Materials, Perovskites, Thermochemical Energy Storage Cycles

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold