Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ TH Wildau Engineerin...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
TH Wildau Engineering and Natural Sciences Proceedings
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/3x...
Other literature type . 2021
Data sources: Datacite
https://dx.doi.org/10.60692/b1...
Other literature type . 2021
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Factual Quantification Methods of Energy Consumption for Transmission Nodes in Cellular Communication Systems: Experimental Case Study in Lome

طرق القياس الكمي الواقعي لاستهلاك الطاقة لعقد الإرسال في أنظمة الاتصالات الخلوية: دراسة حالة تجريبية في لومي
Authors: Kodjovi Semenyo Agbosse; K. A. Dotche; Adekunlé Akim Salami; Koffi Mawugno Kodjo; Ayité Sénah Akoda Ajavon;

Factual Quantification Methods of Energy Consumption for Transmission Nodes in Cellular Communication Systems: Experimental Case Study in Lome

Abstract

The energy efficiency for wireless communication technology standard is very important for the current and the future generation ones. Noting that the energy consumption in communication systems is constantly increasing due to the exponential number of subscribers and high data services demand. In this regard, it becomes necessary to quantify this energy consumption with respect to the communication technology standard at the site. This article presents an evaluation of the factual quantifications methods for the energy consumption of transmission nodes in cellular communications systems. The data collection was obtained on three types of communication technology standards namely second generation (2G), 3G, 4G and their combination using the direct and indirect (the utility records) methods power measurement on the field installation of a mobile telephone operator in Togo. These data have undergone a preprocessing in the Microsoft Excel software (version 2019), then sent in the Matlab software (Matlab R2020b) for further analysis. The results showed that the energy consumption observed at the site is around 124 kWh, 254, kWh and 362 kWh on monthly average respectively for 2G, 2G/3G, and 2G/3G/4G typology used. It further indicated that when more communication standards are used on a given site, its power consumption is much more increasing. The power profile distribution has been investigated, and the analysis revealed that the normal distribution closely fitted the data. However, more parameters related to the number of utilised channels and climatic conditions need to be considered in future research works.

Keywords

MATLAB, Science (General), Device-to-Device Communication, Computer Networks and Communications, Energy Efficiency, distribution fitting tool, Mobile telephony, Environmental engineering, Green Cellular Networks, Q1-390, Telecommunications Infrastructure and Economic Development, Engineering, Cooperative Diversity in Wireless Networks, energy consumption, power profile quantification, FOS: Electrical engineering, electronic engineering, information engineering, Media Technology, FOS: Mathematics, Electrical and Electronic Engineering, Communications system, Mobile radio, Network Coding, Computer network, Cellular communication, Statistics, Next Generation 5G Wireless Networks, TA170-171, cellular communication systems, Computer science, Transmission (telecommunications), Programming language, Energy consumption, Data transmission, Operating system, Electrical engineering, Physical Sciences, Computer Science, Wireless, Data collection, Telecommunications, Software, Mathematics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold