Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Studies i...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Studies in Science and Engineering
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental Investigation of Single Slope Solar Still by Varying Water Depth and with External Reflector

Authors: Yuvaperiyasamy Mayilsamy; Senthilkumar Natarajan; Deepanraj Balakrishnan; Suresh Kumar Ramalingam; Arun Kumar Kalidass;

Experimental Investigation of Single Slope Solar Still by Varying Water Depth and with External Reflector

Abstract

Solar distillation converts salt water into drinkable water, requiring minimal maintenance and energy-saving. However, the desalination process has drawbacks because the system's slow evaporation and condensation rate leads to low freshwater output. Consequently, this method is not widely utilized due to its limited productivity. To address this issue, the study's primary aim was to enhance the productivity of the single-slope solar still. This was achieved by altering the water depth from 3 cm to 6 cm and incorporating an external reflector. The experiments were conducted in Coimbatore, Tamil Nadu, India (11.0168° N, 76.9558° E), with a condensing cover inclined at 11 degrees. The research occurred on varying days between October and November 2023, with water depths ranging from 3 to 6 cm. A comprehensive analysis investigated the influence of different factors on daily production, such as ambient temperature, solar intensity, and inner and outer glass temperatures. The experimental results indicate that the solar still with a single basin, operating at a water depth of 3 cm, achieved the highest water productivity (2.68 L/day) and displayed the best efficiency (30.52%) compared to 4, 5, and 6cm depths. Furthermore, incorporating an external reflector into the solar system still demonstrated a notable elevation in temperature, resulting in a significant boost in water productivity of 3.085 liters per day. This improvement also led to an increase in efficiency of 35.1%.

Keywords

External reflector, Single-slope solar still, Science, Q, Engineering (General). Civil engineering (General), Water quality, TA1-2040, Productivity, Water depth

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Top 10%
gold