Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Arhiv za farmacijuarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Arhiv za farmaciju
Article . 2023 . Peer-reviewed
License: CC BY SA
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Arhiv za farmaciju
Article . 2023
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Resource management in HPLC: Unveiling a green face of pharmaceutical analysis

Upravljanje resursima u HPLC - otkrivanje zelenog lica farmaceutske analize
Authors: Jevrem Stojanović; Jovana Krmar; Biljana Otašević; Ana Protić;

Resource management in HPLC: Unveiling a green face of pharmaceutical analysis

Abstract

High-pressure liquid chromatography (HPLC) is a technique of paramount importance in the analysis of pharmaceuticals because of its ability to separate moderately polar to less polar compounds, such as drugs and related substances.High-pressure liquid chromatography (HPLC) is a technique of paramount importance in the analysis of pharmaceuticals because of its ability to separate moderately polar to less polar compounds, such as drugs and related substances. The concept of green analytical chemistry (GAC) aims to provide more environmentally friendly and safer analytical methods in terms of reagents, energy, and waste. One of the major challenges of GAC is to find an appropriate approach to evaluate the greenness of analytical methods. An extension of GAC, called white analytical chemistry (WAC), has been introduced to consider not only environmental friendliness, but also other aspects that contribute to the sustainability of methods, such as analytical and economic or practical efficiency. HPLC methods are intrinsically not green, due to the high consumption of toxic organic solvents and the resulting generation of large amounts of toxic waste. Fortunately, there are many approaches to overcome the non-green character of HPLC methods. In this article, various modifications of the HPLC methods that increase its environmental friendliness are presented, as well as the various tools used to evaluate environmental friendliness. In addition, the new concept of white analytical chemistry is presented.

Country
Serbia
Keywords

procena ekološke prihvatljivosti metoda, RS1-441, greenness assessment, Pharmacy and materia medica, tečna hromatografija visokih performansi, high-performance liquid chromatography, održivost, sustainability

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 44
    download downloads 177
  • 44
    views
    177
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
14
Top 10%
Top 10%
Top 10%
44
177
Green
gold
Related to Research communities
Energy Research