Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.7480/cgc...
Article . 2016
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A New Reactive Thermoplastic Spacer with Excellent Durable Energy Efficiency for Structural Glazing Façades

Authors: T. Scherer; W. Wittwer; C. Scherer; J. Wolthaus; E. Semar;

A New Reactive Thermoplastic Spacer with Excellent Durable Energy Efficiency for Structural Glazing Façades

Abstract

For the use in structural glazing (SSG) applications a new generation of warm edge system has been developed. This new technology is a spacer system based on polyisobutylene, especially designed for silicone sealed units, which replaces the conventional edge seal components: metal or plastic spacer, desiccant and primary sealant. In contrast to these components, this hot applied spacer system is an integrated polymer matrix incorporating the desiccant, which meets the high requirements regarding long term stability and in particular the demands for noble gas tightness of insulating glass units (IGUs) with silicone secondary sealant. In contrast to rigid spacer frames, this new spacer generation utilizes the whole inner gap size of the IGU to absorb movements caused by environmental stresses and allows full flexibility in shape of IGU. Excellent durability of the edge seal is insured by a chemical bond of the spacer matrix to glass and silicone secondary sealants. Due to the computer controlled application and the low permeability of the spacer the IGUs fulfil the requirements of the EN 1279-3 (gas tightness) even under standard mass production process conditions. This allows for an especially easy production even of triple IGUs, large formats and free shape designs with outstanding accuracy. The innovative reactive thermoplastic spacer is a new milestone in IGU technology with excellent durable energy efficiency for façades and contributes a significant step towards energy sustainability in building envelopes.

Challenging Glass Conference Proceedings, Vol. 5 (2016): Challenging Glass 5

Keywords

Spacer, Structural Silicone Glazing, Energy Efficiency, Clay industries. Ceramics. Glass, Gas Tightness, Warm edge, TP785-869, Flexible Shape

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold