
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Exploring the potential of Smart and Multifunctional Materials in Adaptive Opaque Facade Systems

handle: 10171/68432
Climate Adaptive Facades are considered promising breakthroughs for the reduction of energy consumption, as energy exchange is enabled when the weather conditions offer benefits instead of threats. So far, conventional building envelops enhance thermal performance through opaque fa��ade components and static insulations. Therefore, natural resources from the building environment remain untapped. Little research has been done in Adaptive Opaque Facades, even if their dynamic behaviour shows a strong potential to exploit environmental resources. For the successful development of these innovative fa��ade systems, a balance between sophistication and benefit is necessary. To manage this objective, the implementation of Smart and Multifunctional Materials in the envelopes seems promising, as they are able to repeatedly and reversibly change some of its functions, features or behaviour over time in response to environmental condition. Consequently, to trigger the response of the envelope, no external actuator or complex software management would be necessary. Nevertheless, these materials do not fulfil all the fa��ade requirements by themselves. Thus, they need to be combined with other adaptive technologies and building elements. This paper shows an initial definition of different fa��ade configurations that include reactive materials which enable the adaptiveness of Opaque Fa��ade Systems. The desired results are new facade roles suitable for a temperate climate, according to the potential of these multi-performance materials in the external layer of the envelope: the dynamic temperature change of the external cladding through the solar reflectance change and the enhancement or prevention of thermal loses through Shape Changing Ventilated Facades. To achieve these new high performances, an ideal approach to the thermal behaviour of each fa��ade layer was done and required physical properties of each elements were highlighted. As a result, we propose a mapping of potentially suitable combination of reactive materials with other building elements that might enable the holistic adaptive thermal performance.
Journal of Facade Design and Engineering, Vol. 6 No. 2 (2018): Special Issue ICAE2018
Climate response, NA1-9428, environmental resources, temperate climate, Environmental resources., Architecture, Climate response., Thermal performance., Building construction, Adaptive technologies., adaptive technologies, Temperate climate., thermal performance, innovative systems., innovative systems, TH1-9745
Climate response, NA1-9428, environmental resources, temperate climate, Environmental resources., Architecture, Climate response., Thermal performance., Building construction, Adaptive technologies., adaptive technologies, Temperate climate., thermal performance, innovative systems., innovative systems, TH1-9745
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
