
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Electricity Market Participation and Investment Planning Frameworks for Energy Storage Systems
handle: 10012/16203
The recent trend of increasing share of renewable energy sources (RES) in the generation mix has necessitated new operational and planning studies because of the high degree of uncertainty and variability of these sources. RES such as solar photovoltaic and wind generation are not dispatchable, and when there is excess energy supply during off-peak hours, RES curtailment is required to maintain the demand-supply balance. Furthermore, RES are intermittent resources which have introduced new challenges to the provision of ancillary services that are critical to maintaining the operational reliability of power systems. Energy storage systems (ESS) play a pivotal role in facilitating the integration of RES to mitigate the aforementioned issues. Therefore, there is a growing interest in recent years to examine the potential of ESS in the future electricity grids. This research focuses on developing market participation and investment planning frameworks for ESS considering different ownership structures. First, a novel stochastic planning framework is proposed to determine the optimal battery energy storage system (BESS) capacity and year of installation in an isolated microgrid using a novel representation of the BESS energy diagram. A decomposition-based approach is proposed to solve the problem of stochastic planning of BESS under uncertainty. The optimal decisions minimize the net present value of total expected costs over a multi-year horizon considering optimal BESS operation using a novel matrix representing BESS energy capacity degradation. The proposed approach is solved in two stages as mixed integer linear programming (MILP) problems; the optimal ratings of the BESS are determined in the first stage, while the optimal installation year is determined in the second stage. Extensive studies considering four types of BESS technologies for deterministic, Monte Carlo Simulations, and stochastic cases are presented to demonstrate the effectiveness of the proposed approach. The thesis further studies the ...
- University of Waterloo Canada
energy storage, mileage, mathematical programming with equilibrium constraints, bi-level optimization, investment, ancillary services, 650, microgrid, regulation market, electricity markets, battery, strategic bidding, pumped hydro, stochastic, planning
energy storage, mileage, mathematical programming with equilibrium constraints, bi-level optimization, investment, ancillary services, 650, microgrid, regulation market, electricity markets, battery, strategic bidding, pumped hydro, stochastic, planning
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
