Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao LAReferencia - Red F...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Aproximación bayesiana para predecir los riesgos del cambio climático en el municipio de Pasto

Authors: Ortega Chamorro, Luis Carlos;

Aproximación bayesiana para predecir los riesgos del cambio climático en el municipio de Pasto

Abstract

RESUMEN : El clima es un elemento que influye en la estructura social de las comunidades agrupadas en pueblos y ciudades. Sin embargo, a nivel global experimenta cambios significativos asociados al incremento de los gases de efecto invernadero, que impactan a nivel local, generando nuevas dinámicas territoriales, que agudizan las ya existentes (economía, medios de producción, salud, recursos naturales, entre otros). Si bien estos fenómenos son estudiados ampliamente en grandes ciudades, a nivel de ciudades o comunidades intermedias y pequeñas, su estudio aún no es relevante. Por lo tanto, en esta investigación, pretendemos describir los impactos y los riesgos del cambio climático mediante un estudio de caso de la región Andina aplicado en el municipio de Pasto (Colombia), con una ciudad intermedia que alberga a más del 80% de su población, ubicada en el nodo de los Pastos de la Cordillera de las Andes, con una morfología de montaña y altas pendientes, que lo hace susceptible frente al cambio climático. La metodología propuesta consistió en utilizar el método de análisis estructural para reconocer y establecer las relaciones causales de los elementos que describen sistémicamente el desarrollo del municipio. Posteriormente, con la prueba de estabilidad, identificamos que las series de tiempo de temperatura y precipitación del periodo 2006-2019, cambiaron significativamente respecto al periodo 1976-2005, lo que permite inferior que se está gestando un cambio en el clima local. De ahí que, con la información disponible, las relaciones causales identificadas, y el método correlacional, definimos matemáticamente las relaciones entre las variables climáticas y las urbanas en el periodo 2004-2019, con el fin reconocer las trayectorias que siguen las variables urbanas impactadas por la variabilidad del clima. Las trayectorias identificadas siguen modelos cuadráticos, es decir, que pequeños cambios en las variables de temperatura y precipitación producen alteraciones significativas en las variables urbanas (el impacto crece exponencialmente). Finalmente, con base en los modelos correlaciones, y los escenarios de cambio climático, diseñamos un modelo estocástico con redes bayesianas que nos permitió predecir los riesgos de las variables urbanas a corto (2011-2040), mediano (2041-2070) y largo plazo (2071-2100), donde los elementos más comprometidos son los relacionados con disponibilidad de agua, producción agrícola, seguridad alimentaria, desastres (inundaciones, deslizamientos de tierra e incendios forestales) y salud pública.

ABSTRACT : Climate is an element that influences the social structure of communities grouped in towns and cities. However, at the global level, it is undergoing significant changes associated with the increase in greenhouse gases, which have an impact at the local level, generating new territorial dynamics that exacerbate existing ones (economy, means of production, health, natural resources, among others). Although these phenomena are widely studied in large cities, at the level of intermediate and small cities or communities, their study is not yet relevant. Therefore, in this research, we intend to describe the impacts and risks of climate change through a case study of the Andean region applied to the municipality of Pasto (Colombia), with an intermediate city that houses more than 80% of its population, located in the Pastos node of the Andes Mountains, with a mountain morphology and high slopes, which makes it susceptible to climate change. The trajectories identified follow quadratic models, i.e., small changes in the temperature and precipitation variables produce significant changes in the urban variables (the impact grows exponentially). The proposed methodology consisted of using the structural analysis method to recognize and establish the causal relationships of the elements that systemically describe the development of the municipality. Subsequently, with the stability test, we identified that the time series of temperature and precipitation for the period 2006-2019, changed significantly with respect to the period 1976-2005, which allows us to infer that a change in the local climate is taking place. Hence, with the available information, the causal relationships identified, and the correlational method, we mathematically defined the relationships between climate and urban variables in the period 2004-2019, in order to recognize the trajectories followed by urban variables impacted by climate variability. Finally, based on the correlation models and the climate change scenarios, we designed a stochastic model with Bayesian networks that allowed us to predict the risks of urban variables in the short (2011-2040), medium (2041-2070) and long term (2071-2100), where the most compromised elements are those related to water availability, agricultural production, food security, disasters (floods, landslides and forest fires) and public health.

Country
Colombia
Keywords

http://aims.fao.org/aos/agrovoc/c_1374063074675, 550, http://aims.fao.org/aos/agrovoc/c_24420, Disaster risk management, Gestión del riesgo de desastres, Impacto ambiental, Modelo de simulación, Enfoque sistémico, 630, Environmental impact, Cambio climático, Climate change, http://aims.fao.org/aos/agrovoc/c_1666, Métodos de simulación

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities
Energy Research