Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research@WURarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research@WUR
Research . 2021
License: CC BY NC
Data sources: Research@WUR
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research@WUR
Other literature type . 2021
License: CC BY NC
Data sources: Research@WUR
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Wageningen Staff Publications
Research . 2021
License: CC BY NC
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Efficiency of mineral and organic fertilizers across two continents

Authors: Hijbeek, R.; van Loon, M.P.; ten Berge, H.F.M.; Gram, G.; Vonk, W.; Waldow, L.; van Ittersum, M.K.;

Efficiency of mineral and organic fertilizers across two continents

Abstract

To mitigate climate change, greenhouse gas emissions from the agricultural sector need to decrease. In this light, increasing agronomic use efficiency of nitrogen (N) application (i.e., additional grain yield per kg of N applied) is a promising avenue to attain similar yields with less inputs in regions such as Europe (with high N inputs). In contrast, on the African continent, N inputs need to increase to raise yields, which may contribute to improved food security and prevent land use change. In such case, increasing agronomic N use efficiency (N-AE) and simultaneously increasing N inputs can also be a mitigation strategy by decreasing losses to the environment and improving profitability. In both contexts, it is relevant to understand how much N-AE can be increased in a certain location, compared to the current status, and which N source (organic and/or mineral fertilizer) will be most efficient. In this working paper we present ongoing work on N benchmarking from the crop nutrient gap project (full name: Bringing Climate Smart Agriculture practices to scale: assessing their contributions to narrow nutrient and yield gaps). First, we compare current observed N-AE to the values they could potentially reach under optimal agronomic management. For this, we propose a new benchmarking method based on recent insights on the shape of N response curves and introduce the related ‘degree of good agronomy’. Second, we compare the performance of mineral versus organic fertilizers for cereal cultivation on two continents (Europe and sub-Saharan Africa) based on large number of field experiments. Finally, we assess whether and how N-AE of mineral N fertilizer can be improved when combined with organic amendments. Preliminary findings show that the proposed benchmarking method can work but relies on availability of data on soil N supply, potential yield and attainable yields. Currently, this information is sparsely available which might be a barrier for uptake of the method. We show that N supplied by mineral fertilizers is taken up more efficiently than from organic sources, with variation depending on the type of organic amendment. Variation was larger for sites in Africa than Europe, which makes targeted fertilizer strategies less straightforward. Based on European experimental data, we show that organic amendments do not increase the N-AE of mineral fertilizer N application, most likely due to the increased total N availability. In future research, we hope to improve the data requirements for the proposed benchmarking method, assess drivers of variation for nitrogen fertilizer replacement values of organic amendments and disentangle effects of organic amendments on the efficiency of mineral fertilizer N use, while extending our analysis to tropical regions.

Countries
Netherlands, France, France
Related Organizations
Keywords

nitrogen fertilizers, climate change, fertilizers, organic amendments, nutrient management, Life Science, food security, inorganic fertilizers, nitrogen, agriculture

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research