
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Système de gestion d'énergie d'un véhicule électrique hybride rechargeable à trois roues
handle: 11143/5856
Résumé : Depuis la fin du XXème siècle, l’augmentation du prix du pétrole brut et les problématiques environnementales poussent l’industrie automobile à développer des technologies plus économes en carburant et générant moins d’émissions de gaz à effet de serre. Parmi ces technologies, les véhicules électriques hybrides constituent une solution viable et performante. En alliant un moteur électrique et un moteur à combustion, ces véhicules possèdent un fort potentiel de réduction de la consommation de carburant sans sacrifier son autonomie. La présence de deux moteurs et de deux sources d’énergie requiert un contrôleur, appelé système de gestion d’énergie, responsable de la commande simultanée des deux moteurs. Les performances du véhicule en matière de consommation dépendent en partie de la conception de ce contrôleur. Les véhicules électriques hybrides rechargeables, plus récents que leur équivalent non rechargeable, se distinguent par l’ajout d’un chargeur interne permettant la recharge de la batterie pendant l’arrêt du véhicule et par conséquent la décharge de celle-ci au cours d’un trajet. Cette particularité ajoute un degré de complexité pour ce qui est de la conception du système de gestion d’énergie. Dans cette thèse, nous proposons un modèle complet du véhicule dédié à la conception du contrôleur. Nous étudions ensuite la dépendance de la commande optimale des deux moteurs par rapport au profil de vitesse suivi au cours d’un trajet ainsi qu’à la quantité d’énergie électrique disponible au début d’un trajet. Cela nous amène à proposer une technique d’auto-apprentissage visant l’amélioration de la stratégie de gestion d’énergie en exploitant un certain nombre de données enregistrées sur les trajets antérieurs. La technique proposée permet l’adaptation de la stratégie de contrôle vis-à-vis du trajet en cours en se basant sur une pseudo-prédiction de la totalité du profil de vitesse. Nous évaluerons les performances de la technique proposée en matière de consommation de carburant en la comparant avec une ...
- Université de Sherbrooke Canada
Système de gestion d’énergie, Plug-in hybrid electric vehicles, Machine learning, Contrôle optimal, Véhicule électrique hybride rechargeable, Optimisation méta-heuristique, Apprentissage automatique, Energy management system, Meta-heuristic optimization, Optimal control, 620
Système de gestion d’énergie, Plug-in hybrid electric vehicles, Machine learning, Contrôle optimal, Véhicule électrique hybride rechargeable, Optimisation méta-heuristique, Apprentissage automatique, Energy management system, Meta-heuristic optimization, Optimal control, 620
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
