Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao RE.PUBLIC@POLIMI Res...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Conference object . 2019
Data sources: IRIS Cnr
CNR ExploRA
Conference object . 2019
Data sources: CNR ExploRA
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-step fractionation as a tool for enhanced valorization of technical lignins: a model study

Authors: Julien Troquet; C. Allegretti; Y. Krauke; M. Luebbert; K. Rischka; A. Strini; S. Turri; +2 Authors

Multi-step fractionation as a tool for enhanced valorization of technical lignins: a model study

Abstract

The valorisation of lignin obtained as a by-product of the pulping and biofuel industries is one of the most promising topics in the bioresource field. Despite its potential value as the only massively available aromatic biopolymer feedstock, technical lignin is nowadays mostly burnt as low cost energy source because of its chemical recalcitrance. The high heterogeneity of this material, largely dependent on the different vegetal sources and the specific biomass recovery methods, restricts its direct use and hinders also the optimization of depolymerisation approaches. The development of effective technical lignin fractionation strategies is therefore today one of the most challenging topic in the green chemistry field. In this study, the fractionation of an industrial commercial lignin (Protobind 1000) was developed by a three step procedure set-up either in aqueous or in an environmentally friendly organic solvent in order to obtain sustainable and scalable processes. The first step consisted in a microfiltration or a Soxhlet extraction, depending on the type of solvent used. Then a cascade membrane-mediated ultrafiltration allowed to obtain at the end three refined lignin fractions. The parent lignin and the different lignin fractions were fully characterized. The two-step process reported here allows accessing lignin fractions with well-defined physico-chemical properties (including mass distribution, glass transition temperature, aliphatic and phenolic hydroxyl groups concentration, syringyl/guaiacyl unit ratio) and represents a valuable approach towards the development of bio-based polymers and the preparation of key platform chemicals, thereby paving the way for an effective exploitation and valorization of this remarkable resource.

Country
Italy
Keywords

Soxhlet extraction, ultrafiltration, Technical lignin valorization, microfiltration, sustainability

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research