
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Characterization of auto-Ignition phenomena in spark ignition internal combustion engine using gaseous fuels obtained from biomass ; Caracterización de los fenómenos de autoignición en motores de combustión interna por encendido por chispa utilizando combustibles gaseosos obtenidos de biomasa.
handle: 11323/4682
Characterization of auto-Ignition phenomena in spark ignition internal combustion engine using gaseous fuels obtained from biomass ; Caracterización de los fenómenos de autoignición en motores de combustión interna por encendido por chispa utilizando combustibles gaseosos obtenidos de biomasa.
Studies have been carried out on the phenomenon of auto-ignition in liquid fuels and natural gas, but research on the application of gaseous fuels obtained from biomass is limited. Existing investigations about autoignition mainly focused on the combustion kinetics to determine the delay time, but not on the prediction of the set of parameters that encourage the presence of the phenomenon. In the present research, a thermodynamic model is developed for the prediction of the auto-ignition in Spark Ignition Internal Combustion Engine operated with gaseous fuels, which are obtained from the process of gasification of biomass. The formulated model can handle variable compositions of gaseous fuels and to optimize the main operational parameters of the engine, to verify its influence on the phenomenon under study. Results show the application of this type of alternative fuels in commercial engines that operated with natural gas, varying engine operational parameters while maximizing the power output of the engine ; Se han llevado a cabo estudios sobre el fenómeno de la autoignición en combustibles líquidos y gas natural, pero la investigación sobre la aplicación de combustibles gaseosos obtenidos de la biomasa es limitada. Las investigaciones existentes sobre la autoignición se centraron principalmente en la cinética de la combustión para determinar el tiempo de retardo, pero no en la predicción del conjunto de parámetros que fomentan la presencia del fenómeno. En la presente investigación, se desarrolló un modelo termodinámico para la predicción del autoignición en el motor de combustión interna con encendido por chispa que funciona con combustibles gaseosos, que se obtienen del proceso de gasificación de la biomasa. El modelo formulado puede manejar composiciones variables de combustibles gaseosos y optimizar los principales parámetros operativos del motor, para verificar su influencia en el fenómeno en estudio. Los resultados muestran la aplicación de este tipo de combustibles alternativos en motores comerciales ...
- University of the Coast Colombia
- Universidad de la Costa Colombia
Gas natural, Motores de combustión interna, Biomasa, Biomass, Natural gas, Internal combustion engines, Encendido, Ignition, 620
Gas natural, Motores de combustión interna, Biomasa, Biomass, Natural gas, Internal combustion engines, Encendido, Ignition, 620
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
