Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Procediaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Procedia
Conference object . 2013
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Overall process analysis and optimisation for CO₂ capture from coal fired power plants based on phase change solvents forming two liquid phases

Authors: Liebenthal, Ulrich; Pinto, Diego D. D.; Monteiro, Juliana G. M.-S.; Svendsen, Hallvard F.; Kather, Alfons;

Overall process analysis and optimisation for CO₂ capture from coal fired power plants based on phase change solvents forming two liquid phases

Abstract

In this work the potential of a novel post-combustion CO₂ capture process is analysed with respect to the integrated overall process. As solvent a blend of two amines (DEEA/MAPA) which forms two liquid phases under CO₂ loading is used. The two phases have distinct physical characteristics. Only the heavy phase, rich in CO₂ loading, is led to the desorber. The novel solvent combination promises very low energy consumption compared to a 30 wt.-% MEA solution. The efficiency penalty, taking into account the integrated overall process, is very low too. Furthermore, different integration configurations in the overall process are investigated to show the effect in greenfield and retrofit power plant cases.

Keywords

phase change solvents, integration, post-cobustion, CO2 capture

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research