
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Integration of a PV powered air-conditioning system with sensible and latent heat TES systems
handle: 11584/337810
This study regards the integration of a PV powered air-conditioning system with a thermal energy storage (TES) system. The integration will be performed: a) feeding a heat pump with PV electricity during hours of high solar radiation and energy demand, b) feeding a heat pump with PV electricity and storing thermal energy in a TES system during hours of high solar radiation and low electricity demand and c) feeding the air-conditioning system directly with the thermal energy stored in case of low (or null) PV production and high energy demand. Comparing the load profiles with the PV production forecasts allowed to evaluate energy deficit and surplus on an hourly basis and to define the TES storage capacity. Various low temperature TES systems were analyzed and compared, in particular: a) a direct storage with water, b) a storage with water and solid material and c) a storage with water and PCM. With the aim of maximizing energy self-consumption and self-sufficiency, daily or multi-day TES were evaluated, with reference to a winter availability of excess electricity.
- University of Cagliari Italy
PV systems, Air-conditioning system, Phase change materials, Thermal energy storage
PV systems, Air-conditioning system, Phase change materials, Thermal energy storage
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
