Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Part of book or chapter of book . 2020
Data sources: CNR ExploRA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Part of book or chapter of book . 2020
Data sources: IRIS Cnr
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

TECHNICAL AND ECONOMICAL ASSESSIBILITY OF NATURAL GAS - BIOGAS CO-COMBUSTION IN A SI ENGINE FOR COGENERATIVE PURPOSES: A NUMERICAL STUDY

Authors: Michela Costa; Daniele Piazzullo; P Annunziata; A Palombo;

TECHNICAL AND ECONOMICAL ASSESSIBILITY OF NATURAL GAS - BIOGAS CO-COMBUSTION IN A SI ENGINE FOR COGENERATIVE PURPOSES: A NUMERICAL STUDY

Abstract

Present paper analyses the flexibility of co-combustion power supply in a Spark Ignition (SI) engine fuelled with Natural Gas (NG) and biogas (BG) for cogenerative purposes. The biogas properties are strongly influenced by the source biomass and by the characteristics of the conversion process, thus the possibility of a double-ramp supply with NG taken from the national distribution network allows to compensate for any decay in engine performance linked to the worst quality of the fuel and, therefore, to ensure more stable operations over time. The effects deriving from the addition of NG are quantified through the development of a dedicated one dimensional (1D) numerical model of the engine in GT-Power environment. The combustion sub-model is properly customized according to the different fuel composition relying on a detailed kinetic model, where the laminar flame rate is evaluated for each specific fuel considered. As a result, co-combustion operation appears to be a feasible solution both on the technical and economic point. The developed model can be properly adapted for the executive design of energy systems powered by NG -biogas mixtures, helping in the optimization of the energy and environmental performance.

Country
Italy
Keywords

Co-combustion, Numerical Modelling, Spark Ignition, Biogas, Natural Gas, Natural Gas, Biogas, Spark Ignition, Co-combustion, Numerical Modelling

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research