Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Low N-acetyl-aspartate and high choline in the anterior cingulum of recently abstinent methamphetamine-dependent subjects: a preliminary proton MRS study. Magnetic resonance spectroscopy.

Authors: Thomas E, Nordahl; Ruth, Salo; Kate, Possin; David R, Gibson; Neil, Flynn; Martin, Leamon; Gantt P, Galloway; +4 Authors

Low N-acetyl-aspartate and high choline in the anterior cingulum of recently abstinent methamphetamine-dependent subjects: a preliminary proton MRS study. Magnetic resonance spectroscopy.

Abstract

Studies based on animal models report that methamphetamine (MA) abuse diminishes dopamine (DA) and serotonin innervation in frontal brain regions. In this in vivo human study, we used proton magnetic resonance spectroscopy (MRS), which yields measures of N-acetyl-aspartate (NAA), a marker of living neurons, to examine frontal brain regions possibly affected by methamphetamine dependence (MD). We tested the hypothesis that MD subjects would exhibit abnormally low levels of NAA, referenced to creatine (Cr), in anterior cingulate gray matter. We further hypothesized that the primary visual cortex, which receives relatively less DA innervation than the frontal brain regions, would show normal NAA/Cr ratios in MD subjects. Subjects included nine MD men (mean+/-standard deviation (S.D.)=32.5+/-6.4 years) and nine age-matched control men (mean+/-S.D.=32.7+/-6.8 years). The MD subjects were MA-free for 4-13 weeks. Proton MRS metabolites were expressed as ratios of creatine; the absolute values of which did not distinguish controls and MD subjects. With regard to metabolite ratios, the MD men had significantly lower NAA/Cr in the cingulum (mean+/-standard error (S.E.): control=1.46+/-0.03; MD=1.30+/-0.03; Mann-Whitney P=0.01) but not in the visual cortex (mean+/-S.E.: control=1.64+/-0.06; MD=1.69+/-11; Mann-Whitney P=0.52) relative to controls. These results provide evidence for NAA/Cr deficit that is selective to the anterior cingulum, at least with respect to visual cortex, in MD subjects. The neuronal compromise that these changes reflect may contribute to the attentional deficits and dampened reward system in MD.

Keywords

Adult, Male, Neurons, Aspartic Acid, Serotonin, Magnetic Resonance Spectroscopy, Dopamine, Amphetamine-Related Disorders, Age Factors, Creatine, Gyrus Cinguli, Magnetic Resonance Imaging, Choline, Frontal Lobe, Methamphetamine, Substance Withdrawal Syndrome, Humans, Visual Cortex

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    81
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
81
Top 1%
Top 1%
Top 10%