Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Universidade do Minh...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sustainable bioenergy carriers from wastes

Authors: Pereira, M. A.; Cavaleiro, A. J.; Abreu, A. A.; Costa, J. C.; Sousa, D. Z.; Alves, M. M.;

Sustainable bioenergy carriers from wastes

Abstract

The development of new technologies for renewable energy production is crucial for decreasing the reliance in fossil fuels and improving global sustainability. Waste materials are valuable resources that can be used for the production of energy carriers. Organic wastes can be anaerobically digested to ultimately produce methane. Hydrogen can be recovered from this process, if methanogenesis is inhibited. These energy carriers can also be derived from recalcitrant materials in a two step-process combining waste gasification and subsequent syngas bioconversion. Research carried out at our group focuses on the study of anaerobic processes for the production of energy-carriers using a multidisciplinary approach that combines both microbiological and technological aspects. Important achievements have been made within the anaerobic digestion of lipid-rich wastes. From our research, it became clear that lipids and LCFA-rich wastewater anaerobic treatment can be feasible with efficient methane recovery. Additionally, wastes containing fats and proteins, such as wastes from poultry industry, slaughterhouse and meat-processing industry have been assessed for methane production. Hydrolysis of cellulolytic and proteinaceous materials in solid wastes was enhanced using physicochemical pre-treatments and bioaugmentation, which is auspicious for optimal methane production. Sugar-rich wastes were used for assessing biohydrogen production and allowed the identification of critical aspects for methanogenesis inhibition. Immobilization of hydrogen-producing microorganisms in high rate continuous reactors was performed with good hydrogen recovery. Currently, we are studying the utilization of latex bionanocoatings for the entrapment of hydrogen-producing microorganisms as a means to improve cell immobilization. Another research area of expansion in our group is syngas fermentation to methane. Studies have been conducted on gas-liquid mass transfer for evaluating the potential of bioprocesses for syngas conversion. Concurrently, the physiology and microbiology of syngas-converting mixed cultures is also being assessed.

Country
Portugal
Keywords

Waste, Anaerobic digestion, Biogas, Bioenergy, Biohydrogen, Syngas

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 20
    download downloads 4
  • 20
    views
    4
    downloads
    Data sourceViewsDownloads
    Universidade do Minho: RepositoriUM204
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
20
4
Green
Related to Research communities
Energy Research