
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Experimental and numerical study on axial crushing behaviour of pultruded composite tubes
handle: 1854/LU-480805
An extensive experimental investigation was carried out to study the energy absorbing characteristics and progressive deformation behavior of unidirectional pultruded composite tubes subjected to an axial impact load. Pultruded square and circular profiles with glass-polyester and glass-vinylester combinations were used to study the specific energy absorption characteristics. Two types of triggering profiles were incorporated to investigate the effect of triggering on energy absorption. All the above combinations were investigated for three impact velocities. The effects of geometry profile, triggering and strain rate on energy absorption of composite tubes were studied in detail. A numerical simulation using finite element method was carried out to assess the energy absorption capability of composite tubes. To model the delamination between the composite plies, a new approach was adopted using cohesive elements. The progressive failure modes and crushing characteristics of the composite tubes are presented. From these studies, the composite tubes can be considered as energy absorbing members for impact applications.
- Ghent University Belgium
- Vrije Universiteit Brussel Belgium
Technology and Engineering, strain rate, Specific energy absorption, progressive failure, specific energy absorption, triggering, cohesive element., cohesive element
Technology and Engineering, strain rate, Specific energy absorption, progressive failure, specific energy absorption, triggering, cohesive element., cohesive element
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
