Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ MSpace at the Univer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation of an integrated sewage pipe with ground heat exchanger for long-term efficiency estimation

Authors: Dacquay, Connor;

Evaluation of an integrated sewage pipe with ground heat exchanger for long-term efficiency estimation

Abstract

Extracting heat from a sewage pipe through a typical horizontal ground heat exchanger has recently been introduced as a renewable energy alternative to reduce fossil fuel usage. This paper presents a novel design for a ground heat exchanger that extracts heat from the surrounding soil and sewage within the pipe while simultaneously being carried to a wastewater treatment plant. This research focuses on the long-term efficiency of the system under transient conditions in a cold climate. A numerical model using COMSOL Multiphysics was developed to verify the sustainability of the system for over 25 years. The model used constant inlet fluid temperatures to evaluate heat by conductive and convective heat transfer mechanisms within the pipe and surrounding soils by considering phase change of pore water. The results showed, by adopting the operation strategy proposed in this study, a maximum temperature change in the surrounding soil adjacent to the heat extraction system over 25 years was 0.10°C during the heating season in Winnipeg, Manitoba. The horizontal distance at which the heat extraction system did not show an impact on temperature change of adjacent soil was determined at 4 meters. Critical parameters in this evaluation were system depth, sewage level, and the high-density polyethylene pipe thermal properties. The sustainability of the system was not affected by the system depth due to thermal balancing between climatic, subsurface and sewage heat fluxes. Sustainable behavior was achieved at 50% and 75% of sewage pipe capacity. The effect on thermal performance from the high-density polyethylene pipe thermal properties was deemed insignificant.

Country
Canada
Related Organizations
Keywords

Renewable energy, Heat extraction, Geothermal

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities
Energy Research