
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Short-therm forecasting method to improve the performance of a model predictive control strategy for a residential hybrid renewable energy system
handle: 2108/231553
Energy Management Systems (EMS) strategies aim at matching energy production with the request, as they are off-phased and highly variable whenever LV networks are considered. This work demonstrates how an EMS based on a Model Predictive Control (MPC) strategy can perform better improving the accuracy of the load forecasting algorithm. To that aim a novel approach is presented, that is characterized by the correlation between real time and historical consumption data. The technique has been tested for over a year of operation. Three test cases have been compared (low error load forecasting, higher error load forecasting and correlation-corrected load forecasting) and techno-economic advantages have been obtained with the new approach. Indeed, a reduction of 14,1% in energy unbalance with the grid and of 8,7% in annual operational costs have been obtained when the load forecast correction is performed. Moreover, the critical components of the system (Electrochemical Energy Storage and Fuel Cell) result to work in less stressful operating conditions, another positive effective of the technique. (C) 2019 Elsevier Ltd. All rights reserved.
Microgrid, Settore ING-IND/08 - MACCHINE A FLUIDO, Renewables; Distributed generation; Fuel cells; Microgrids; Hybrid renewable energy systems, Fuel cell, Renewable, Distributed generation, Hybrid renewable energy systems, 620
Microgrid, Settore ING-IND/08 - MACCHINE A FLUIDO, Renewables; Distributed generation; Fuel cells; Microgrids; Hybrid renewable energy systems, Fuel cell, Renewable, Distributed generation, Hybrid renewable energy systems, 620
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
