Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The role of plant vasculature in tackling N₂O emissions ; The role of plant vasculature in tackling N2O emissions

Authors: Safdar, L.B.; Fisk, I.D.; Foulkes, M.J.;

The role of plant vasculature in tackling N₂O emissions ; The role of plant vasculature in tackling N2O emissions

Abstract

Available online 13 October 2023 ; Rising demand for protein-rich foods can impact N₂O emissions from croplands. Recent research has pointed to the role of modified plant vasculature in grain protein increase. Here we highlight how discovering the mechanistic role of plant vasculature in protein improvement and nitrogen-use efficiency could reduce global N₂O emissions. ; Luqman B. Safdar, Ian D. Fisk, and M. John Foulkes

Country
Australia
Related Organizations
Keywords

climate change, nitrogen-use efficiency, plant vasculature, N(2)O emissions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research