
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Vibrational relaxation of CO₂ (12⁰1) by argon ; Vibrational relaxation of CO(2) (12 degrees 1) by argon
handle: 2440/52420
We present experimental measurements of the vibrational relaxation of CO2 (1 20 1) by argon, at ambient temperature (295 ± 2 K). The CO2 molecules were directly excited to the (1 20 1, J = 14) ro-vibrational state by a tunable laser radiation at ∼2 μm. Time-resolved infrared fluorescence technique was used to study the collisional relaxation process. The bimolecular deactivation rate constant of CO2 (1 20 1) by argon was found to be (825 ± 43 Torr-1 s-1) while the self-deactivation by CO2 (0 00 0) was determined to be (3357 ± 135 Torr-1 s-1). The radiative life-time of the vibrational combination band (1 20 1), τ[CO2 (1 20 1)], was found to be (5.55 ± 0.27) μs. Modern angular momentum theory was used to explain values of the deactivation rate measured. It is concluded that the presence of the (0 80 0) state acts like an angular momentum sink leading to a fast deactivation rate of the CO2 (1 20 1) by argon. © 2009 Elsevier B.V. All rights reserved. ; Z.T. Alwahabi, J. Zetterberg, Z.S. Li, M. Aldén ; http://www.elsevier.com/wps/find/journaldescription.cws_home/505699/description#description
- University of Adelaide Australia
- University of Adelaide Australia
energy transfer, time-resolved IR fluorescence, Vibrational relaxation, 541
energy transfer, time-resolved IR fluorescence, Vibrational relaxation, 541
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
