Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Recolector de Ciencia Abierta, RECOLECTA
Conference object . 2021 . Peer-reviewed
License: CC BY NC ND
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
UPCommons. Portal del coneixement obert de la UPC
Conference object . 2021 . Peer-reviewed
License: CC BY NC ND
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

OpenFOAM computational fluid dynamics simulations of thermal wind generation in mountain/valley configurations

Authors: Athota, Rathan Babu; Villardi de Montlaur, Adeline de; Arias Calderón, Santiago; Rojas Gregorio, José Ignacio;

OpenFOAM computational fluid dynamics simulations of thermal wind generation in mountain/valley configurations

Abstract

Thermal winds appear in mountainous areas and valleys due to temperature gradients caused by the buoyancy effects associated with the diurnal heating-cooling cycle of the lower atmosphere. These winds develop over complex topographies of multiple scales, and reverse their direction twice a day, driven by formation and dissipation of temperature inversions. Winds may flow up-slope (anabatic winds), up-valley, or from the plain to the mountain massif during day-time. Conversely, during night-time, winds may flow down-slope (katabatic winds), down-valley, or from the mountain massif to the plain. Previous investigations have shown that such winds can reach relatively high speeds [1], which can be interesting for wind energy applications. Moreover, thermal winds showing higher regularity and periodicity than synoptic winds [1], can thus be more predictable, which is of special interest to the current energy market, aiming to match the energy demand with the renewable energy production, given the fact that wind energy and solar energy production cannot be controlled at will. In this work, thermal wind generation is analysed using OpenFOAM, which is an open source computational fluid dynamics software. For this analysis, an idealized numerical model of a mountain-valley system with a mountain slope angle of 20º is used. Anabatic and katabatic winds are generated imposing altitude-dependent temperature boundary conditions on the slope. OpenFOAM’s solver buoyantBoussinesqPimpleFoam is used, and validation of different turbulence models and initial conditions is done by comparing OpenFOAM simulations with results from the literature. The effects of the fluid domain height and of the valley width on the flow behaviour are also discussed. Conclusion on anabatic and katabatic wind formation and on their possible application to wind energy generation is finally drawn.

Objectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminant::7.a - Per a 2030, augmentar la cooperació internacional per tal de facilitar l’accés a la investigació i a les tecnolo­gies energètiques no contaminants, incloses les fonts d’energia renovables, l’eficiència energètica i les tecnologies de combustibles fòssils avançades i menys contaminants, i promoure la inversió en infraestructures energètiques i tecnologies d’energia no contaminant

Objectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminant::7.2 - Per a 2030, augmentar substancialment el percentatge d’energia renovable en el con­junt de fonts d’energia

Objectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminant

Peer Reviewed

Country
Spain
Related Organizations
Keywords

Slope, Thermal wind, :Física [Àrees temàtiques de la UPC], Àrees temàtiques de la UPC::Física, Anabatic, OpenFOAM, Valley, Dinàmica de fluids computacional, Computational fluid dynamics, Mountain, Katabatic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average