Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Purdue E-Scholararrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Purdue E-Scholar
Other literature type . 2018
Data sources: Purdue E-Scholar
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

R134a and its low GWP substitutes R1234yf and R1234ze(E) condensation inside a 4 mm horizontal smooth tube

Authors: Giovanni A. LONGO; Simone MANCIN; Giulia RIGHETTI; Claudio ZILIO;

R134a and its low GWP substitutes R1234yf and R1234ze(E) condensation inside a 4 mm horizontal smooth tube

Abstract

This paper presents the comparative analysis of HFC134a and its low GWP substitutes HFO1234yf, and HFO1234ze(E) in saturated vapour condensation inside a 4 mm ID horizontal smooth tube. The experimental tests were carried out at 30, 35, and 40°C of saturation temperatures, with refrigerant mass flux in the range 100 - 600 kg m-2s-1 at decreasing vapour quality. A transition point from gravity-dominated and forced convection condensation was found in the range of the equivalent Reynolds number 10,000  20,000. The experimental heat transfer coefficients in the forced convection condensation regime were very well predicted by the Akers et al. (1959) model, whereas the Friedel (1979) correlation was able to reproduce the frictional pressure drop data in the whole experimental range. HFO1234yf and HFO1234ze(E) exhibit heat transfer coefficients and frictional pressure drops similar to those of HFC134a and both the HFO refrigerants seem to be very promising as long-term low GWP substitutes for HFC134a.

Countries
Italy, United States, United States
Keywords

GWP, Condensation, HFC, GWP, condensation, R1234ze(E), R1234yf, small diameter, smooth tube, HFO, 532, 620

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green