Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
VBN
Conference object . 2019
Data sources: VBN
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Suspension-firing of biomass for heat and power generation:A closed model for non-spherical particle tracking

Authors: Yin, Chungen;

Suspension-firing of biomass for heat and power generation:A closed model for non-spherical particle tracking

Abstract

Co-firing biomass in existing utility boilers can substantially increase the use of renewable energy sources and reduce CO2 emissions. Compared to pulverized coal particles, biomass particles prepared for suspension-firing are often large and highly non-spherical, which results in very different particle motion and thus different conversion. This paper presents a closed model for non-spherical particle motion, with the aim to improve biomass suspension-firing simulation and then advance biomass combustion technology. Different from the conventional model for tracking tiny, spherical and heavy particles, the closed model numerically solves the coupled equations of translational and rotational motion of non-spherical particles and fully addresses the effects of their shape and orientation. To validate the model, an experimental study is performed to characterize the motion of cylindrical polyvinylchloride (PVC) particles in a water tank. The model prediction shows a good agreement with the experimental results in both particle translation and rotation. The model has been successfully used in simulation of a biomass suspension-fired furnace. The model has also been successfully applied by other groups for different purposes. To further improve the accuracy of the model, accommodate the latest achievements in force and torque coefficient correlations for non spherical particles, and make the model applicable to the latest biomass suspension-firing, the model will be properly extended and pneumatic transport of biomass particles in a lab-scale set-up will be experimentally characterized.

Country
Denmark
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average