Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chemical Engineering...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Chemical Engineering Transactions
Article . 2018
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Desorption of Isobutyl Acetate into Air as a Low-Cost Alternative System for the Measurement of Liquid Phase Mass Transfer Coefficients

Authors: Lamprecht, Johannes H.; Burger, Andries J.;

Desorption of Isobutyl Acetate into Air as a Low-Cost Alternative System for the Measurement of Liquid Phase Mass Transfer Coefficients

Abstract

A study was conducted in enhancing the measurement of volumetric liquid phase mass transfer coefficients (KLa) in packed columns, by re-considering the application of conventional desorption and absorption of oxygen and carbon dioxide. The cost-effectiveness of this well-established system is hampered by reagent costs, in the form of oxygen and nitrogen, as well as plant footprint requirements. Therefore, aqueous desorption of isobutyl acetate into air (ADIBAA) is proposed as alternative to the conventional system. This ADIBAA-method utilises continuous dosing of isobutyl acetate with on-line ultraviolet quantification. This decreases reagent costs as only the desorbed component is dosed, thereby limiting related losses. Additional benefits of the newly proposed ADIBAA-method include minimal environmental impact and short experimental evaluation times, in the order of 20-30 min. The ADIBAA-method was experimentally verified in a 400 mm ID column with a 1.1 m bed height. FlexiRings® sizes 1.5” and 2”, and Intalox® Ultra™ size A, were evaluated over liquid loadings ranging from 6 to 96 m3.m 2.h 1 and vapour flow factors between 0.6 and 2 kg.m-0.5.s-1. Liquid phase mass transfer coefficients (KLa) ranging from 0.0032 to 0.168 s-1 and 0.004 to 0.02 s-1 were measured for the 1.5” and 2” FlexiRings®, respectively. This is in agreement with the literature, with deviations limited to ca 10%. The liquid phase mass transfer coefficient evaluations of the Intalox® Ultra™ size A, yielded KLa values ranging from 0.00482 to 0.0242 s-1. These results confirm the manufacturer statement that modern Intalox® Ultra™ packing provides similar mass transfer efficiency to smaller, and therefore higher apparent interfacial area packing from the second and third generations. This implies comparative mass transfer efficiencies between Intalox® Ultra™ A and 1” FlexiRings®, while providing decreased pressure drop and increased hydraulic capacity.

Country
South Africa
Related Organizations
Keywords

Computer engineering. Computer hardware, 660, Isobutyl acetate, TK7885-7895, Volumetric apparatus, Kinetics, Chemical engineering, TP155-156

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average