
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Accelerated Dynamic Cardiac MRI Using Motion-Guided Compressed Sensing with Regional Sparsity
doi: 10.18130/v3wk07
Accelerated Dynamic Cardiac MRI Using Motion-Guided Compressed Sensing with Regional Sparsity
Dynamic cardiac Magnetic Resonance Imaging (CMR) demands fast imaging techniques to obtain high spatial-resolution, large spatial-coverage and high temporal-resolution images for accurate prognosis and diagnosis. Compressed sensing, a fast imaging technique of growing importance, is making a major impact on MRI. However, the complex dynamics which include both object motions and image contrast variations encountered in dynamic CMR pose challenging tasks for CS techniques. This dissertation presents a novel CS method to accelerate dynamic CMR imaging, especially those with complex dynamics, with a motion-compensated CS method that exploits regional spatiotemporal sparsity: Block LOw-rank Sparsity with Motion-guidance (BLOSM). In Aim 1 of the dissertation, the BLOSM method was first developed and validated using retrospectively accelerated CMR data and computer simulated motion phantoms. Two CMR applications, first-pass perfusion for myocardial blood flow assessment and cine DENSE for myocardium mechanics assessment, both of which present extremely challenging tasks for CS reconstruction, were prospectively accelerated using BLOSM in this dissertation. In Aim 2, first-pass cardiac perfusion imaging was accelerated on patients with suspected heart disease. With prospective rate 4 acceleration, multi-slice high spatial resolution perfusion images were acquired. The image quality offered by BLOSM showed significant improvement over the other CS methods when respiratory motion occurred. In Aim 3, 2D cine DENSE imaging was accelerated using BLOSM. The scan time was shortened from two separate breathholds of total 28 heartbeats to one single breathhold of 8 heartbeats. BLOSM provided high image quality and the cardiac function assessed from BLOSM reconstructed images matched well with the fully-sampled reference data.
- University of Virginia United States
- University of Virginia United States
Compressed Sensing, Motion-guidance, Low-rank model, MRI, Regional sparsity
Compressed Sensing, Motion-guidance, Low-rank model, MRI, Regional sparsity
5 Research products, page 1 of 1
- 2017IsAmongTopNSimilarDocuments
- 2022IsAmongTopNSimilarDocuments
- 2012IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
