Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.2...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.21203/rs.3....
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.researchsquare.com...
Article
License: CC BY
Data sources: UnpayWall
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Long life Perovskite Nanoplatelet Lasers with high quality factor enabled through engineering degradation pathways

Authors: Guohui Li; Huihui Pi; Yanfu Wei; Bolin Zhou; Ya Gao; Rong Wen; Yuying Hao; +3 Authors

Long life Perovskite Nanoplatelet Lasers with high quality factor enabled through engineering degradation pathways

Abstract

Abstract MAPbI3 perovskite has attracted widespread interests for developing low-cost near infrared semiconductor gain media. However, it faces the instability issue under operation conditions, which remains a critical challenge. It is found that the instability of the MAPbI3 nanoplatelet laser comes from the thermal-induced-degradation progressing from the surface defects towards neighboring regions. By using PbI2 passivation, the defect-initiated degradation is significantly suppressed and the nanoplatelet degrades in a layer-by-layer way, enabling the MAPbI3 laser sustain for 4500 s (2.7×107 pulses), which is almost 3 times longer than that of the nanoplatelet laser without passivation. Meanwhile, the PbI2 passivated MAPbI3 nanoplatelet laser with the nanoplatelet cavity displaying a maximum quality factor up to ~7800, the highest reported for all MAPbI3 nanoplatelet cavities. Furthermore, a high stability MAPbI3 nanoplatelet laser that can last for 8500 s (5.1×107 pulses) is demonstrated based on a dual passivation strategy, by retarding the defect-initiated degradation and surface-initiated degradation, simultaneously. This work provides in-depth insights for understanding the operating degradation of perovskite lasers and the dual passivation strategy paves the way for developing high stability near infrared semiconductor laser media.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
hybrid