Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IOP Conference Serie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IOP Conference Series : Earth and Environmental Science
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enhanced Perovskite Solar Cell Performance by Adding Magnesium Acetate Using Two-Step Spin-Coating Method

Authors: D A Yusra; N Mufti; A F Muyasaroh; E Latifah;

Enhanced Perovskite Solar Cell Performance by Adding Magnesium Acetate Using Two-Step Spin-Coating Method

Abstract

Abstract The poor stability of perovskite materials is a problem of concern in commercialization. In this study, we investigated the doping of magnesium cations (Mg2+) in PbI2 to improve the stability and efficiency of perovskite solar cells. The doping effect of Mg2+ can increase the crystallization rate. The perovskite film fabricated structure consists of ITO/TiO2/perovskite/CuO. The fabrication method used is a two-stage spin coating. The concentrations of MgAc2 were used 0, 0.75, 1, and 1.25 mg ml−1. The characterizations used are XRD (X-Ray Diffraction), UV-Vis, SEM-EDX. While the performance of solar cells is measured using a solar simulator. The XRD pattern shows that the sample has a crystal structure of MAPbI3, PbI2, and CuO phases. The MAPbI3 lattice parameter increased with increasing Mg acetate concentration. The grain size of the perovskite layer is between 5 - 15 μm, with a thickness of about 30 μm. The efficiency of perovskite solar cells increases with the increasing concentration of MgAc2.

Related Organizations
Powered by OpenAIRE graph
Found an issue? Give us feedback