Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparison of U.S. Midwest corn stover ethanol greenhouse gas emissions from GREET and GHGenius

Authors: Goretty Dias; Bradley A. Saville; Heather L. MacLean; Jon Albert Obnamia;

Comparison of U.S. Midwest corn stover ethanol greenhouse gas emissions from GREET and GHGenius

Abstract

Abstract This paper evaluates differences in life cycle greenhouse gas emissions of corn stover ethanol produced in the U.S. Midwest, as estimated by the life cycle-based software GHGenius 4.03a, GREET 2013, and GREET 2015. Life cycle assessments are not typically conducted using more than one software package, but comparisons such as the analysis in this paper provide a critical review of a fuel product system. In particular, differences in the data and assumptions become evident for life cycle stages of the same fuel product when compared between life cycle assessment software packages. Using default settings in the three software packages, life cycle greenhouse gas emissions predictions ranged from 2.75 to 47.8 gCO2 equivalent per MJ of ethanol (gCO2e MJ−1), which presents a difference of as much as 45 gCO2e MJ−1. Assumptions regarding nitrogen fertilizer, land management, on/off-site enzyme production, and material/energy inputs included/excluded had substantial effects on life cycle greenhouse gas emissions. A consistent corn stover ethanol pathway using equivalent model assumptions and material/energy inputs was developed and implemented in each of the software packages, resulting in life cycle greenhouse gas emissions ranging from 40.7 to 42.0 gCO2e MJ−1. The difference in life cycle greenhouse gas emissions was considerably reduced to 1.3 gCO2e MJ−1 at most between software packages; however, individual emissions sources such as nitrogen fertilizer production, fertilizer application, corn steep liquor, glucose, sodium hydroxide, and biomass electricity still exhibit variation between software packages (e.g., up to 7.3 gCO2e MJ−1 E100 for equivalent glucose input), mainly due to different emissions factors data. Life cycle greenhouse gas emissions appeared consistent because emissions sources that vary between software packages offset each other. Differences in greenhouse gas emissions determined for corn stover ethanol point to the need to improve the life cycle modelling and replicability of life cycle studies on this biofuel pathway. Such inconsistencies are relevant in a carbon economy because the same product will have a different value in different jurisdictions as a result of differences in life cycle assessment software packages.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%