Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermal Performance of Automobile Radiator Using Carbon Nanotube-Water Nanofluid—Experimental Study

Authors: Santosh Kumar Sahu; Sandesh S. Chougule;

Thermal Performance of Automobile Radiator Using Carbon Nanotube-Water Nanofluid—Experimental Study

Abstract

In the present study, the convective heat transfer enhancement of carbon nanotube (CNT)-water nanofluid has been studied experimentally inside an automobile radiator. Heat removal rate of the coolant flowing through the automobile radiators is of great importance for the optimization of fuel consumption. In this study, four different concentrations of nanofluids in the range of 0.15–1 vol. % were prepared with the addition of CNT nanoparticles into water. The CNT nanocoolants are synthesized by functionalization (FCNT) and surface treatment (SCNT) method. The effects of various parameters, namely synthesis method, variation in pH values and nanoparticle concentration on the Nusselt number are examined through the experimental investigation. Results demonstrate that both nanocoolants exhibit enormous change Nusselt number compared with water. The results of functionalized CNT nanocoolant with 5.5 pH exhibits better performance compared to the nanocoolant with pH value of 6.5 and 9. The surface treated CNT nanocoolant exhibits the deterioration in heat transfer performance. In addition, Nusselt number found to increase with the increase in the nanoparticle concentration and nanofluid velocity.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    66
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
66
Top 10%
Top 10%
Top 10%