Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fusion Engineering a...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fusion Engineering and Design
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Influence of tungsten–carbon mixed layer and irradiation defects on deuterium retention behavior in tungsten

Authors: Kenji Okuno; Hiromichi Uchimura; Yuji Hatano; Yasuhisa Oya; Kensuke Toda; Tetsuo Fujishima; Makoto Kobayashi; +4 Authors

Influence of tungsten–carbon mixed layer and irradiation defects on deuterium retention behavior in tungsten

Abstract

Abstract The D 2 + fluence dependence on deuterium (D) retention was studied to clarify the D retention mechanism in tungsten. The additional D desorption stage was observed around 660 K in the TDS spectrum for a sample implanted with D 2 + up to the fluence of 10 23 D + m −2 , which desorption stage was not observed the D 2 + implanted sample with the fluence less than 10 22 D + m −2 . The TEM observation showed that the highly dense voids were formed in tungsten by D 2 + implantation with the fluence of 10 23 D + m −2 , considering that the D would be trapped by voids. To understand the D trapping by voids in C + implanted tungsten, C + –D 2 + sequential implantation experiments at various C + implantation temperatures were performed. It was found that the amount of D desorbed around 560 K was increased by increasing the C + implantation temperature. The formation of the voids was observed with increasing the C + implantation temperature by TEM, indicating that the increase of D desorption around 560 K was caused by the formation of voids. However, the desorption temperature of D trapped by voids in C + implanted sample was lower than that in D 2 + implanted one. TEM observation and XPS measurement indicated that this difference was caused by the increase of void size and/or the presence of implanted carbon.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Top 10%