Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Abdominal Radiologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Abdominal Radiology
Article . 2020 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Importance of phase enhancement for machine learning classification of solid renal masses using texture analysis features at multi-phasic CT

Authors: Nicola Schieda; Kathleen Nguyen; Rebecca E. Thornhill; Matthew D. F. McInnes; Mark Wu; Nick James;

Importance of phase enhancement for machine learning classification of solid renal masses using texture analysis features at multi-phasic CT

Abstract

To compare machine learning (ML) of texture analysis (TA) features for classification of solid renal masses on non-contrast-enhanced CT (NCCT), corticomedullary (CM) and nephrographic (NG) phase contrast-enhanced (CE) CT.With IRB approval, we retrospectively identified 177 consecutive solid renal masses (116 renal cell carcinoma [RCC]; 51 clear cell [cc], 40 papillary, 25 chromophobe and 61 benign tumors; 49 oncocytomas and 12 fat-poor angiomyolipomas) with renal protocol CT between 2012 and 2017. Tumors were independently segmented by two blinded radiologists. Twenty-five 2-dimensional TA features were extracted from each phase. Diagnostic accuracy for 1) RCC versus benign tumor and 2) cc-RCC versus other tumor was assessed using XGBoost.ML of texture analysis features on different phases achieved mean area under the ROC curve (AUC [SD]), sensitivity/specificity for 1) RCC vs benign = 0.70(0.19), 96%/32% on CM-CECT and 0.71(0.14), 83%/58% on NG-CECT and; 2) cc-RCC vs other = 0.77(0.12), 49%/90% on CM-CECT and 0.71(0.16), 22%/94% on NG-CECT. There was no difference in AUC comparing CECT to NCCT (p = 0.058-0.54) and no improvement when combining data across all three phases compared single-phase assessment (p = 0.39-0.68) for either outcome. AUCs decreased when ML models were trained with one phase and tested on a different phase for both outcomes (RCC;p = 0.045-0.106, cc-RCC; < 0.001).Accuracy of machine learning classification of renal masses using texture analysis features did not depend on phase; however, models trained using one phase performed worse when tested on another phase particularly when associating NCCT and CECT. These findings have implications for large registries which use varying CT protocols to study renal masses.

Related Organizations
Keywords

Contrast Media, Kidney Neoplasms, Diagnosis, Differential, Machine Learning, Humans, Tomography, X-Ray Computed, Carcinoma, Renal Cell, Retrospective Studies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%