Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impact of coal fly ash addition on ash transformation and deposition in a full-scale wood suspension-firing boiler

Authors: Peter Arendt Jensen; Peter Glarborg; Muhammad Shafique Bashir; Hao Wu; Bo Sander;

Impact of coal fly ash addition on ash transformation and deposition in a full-scale wood suspension-firing boiler

Abstract

Abstract Ash transformation and deposition during pulverized wood combustion in a full-scale power plant boiler of 800 MW th were studied with and without the addition of coal fly ash. The transient ash deposition behavior was characterized by using an advanced deposit probe system at two boiler locations with flue gas temperatures of about 1300 °C and 800 °C, respectively. The mechanisms of ash transformation and deposit formation were elaborated through a detailed characterization of the collected deposits and fly ashes. The results implied that during pulverized wood combustion, the formation of deposits at the location with high flue gas temperatures was characterized by a slow and continuous growth of deposits followed by the shedding of a large layer of deposits, while at the location with low flue gas temperature the deposit formation started with a slow build-up and the amount of deposits became almost constant after a few hours. The formed deposits, especially those at the location with low flue gas temperatures, contained a considerable amount of K 2 SO 4 , KCl, and KOH/K 2 CO 3 . With the addition of a large amount (about 4 times of the mass flow of wood ash) of coal fly ash to the boiler, these alkali species were effectively removed both in the fly ash and in the deposits. Although the ash deposition rate at the location with high flue gas temperature was increased with coal fly ash addition, the removability of the deposits was significantly improved, resulting in a more frequent shedding of the deposits. Overall, the results from this work suggest that coal fly ash can be an effective additive to minimize the possible ash deposition and corrosion problems during suspension-firing of wood.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    66
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
66
Top 10%
Top 10%
Top 10%