
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Fungal dynamics during anaerobic digestion of sewage sludge combined with food waste at high organic loading rates in immersed membrane bioreactors

pmid: 34022478
Fungal dynamics during anaerobic digestion of sewage sludge combined with food waste at high organic loading rates in immersed membrane bioreactors
In this study, the influence of distinct hydraulic retention times (HRT) and organic loading rates (OLRs) on fungal dynamics during food waste anaerobic digestion in immersed membrane-based bio-reactors (iMBR) were investigated. The organic loading rate 4-8 g VS/L/d (R1) and 6-10 g VS/L/d (R2) were set in two iMBR. T1 (1d), T2 (15d) and T3 (34d) samples collected from each bioreactor were analyzed fungal community by using 18s rDNA. In R2, T2 had the most abundant Ascomycota, Basidiomycota, Chytridiomycota and Mucoromycota. As for R1, T3 also had the richest Cryptomycota except above four kinds of fungi. Subsequently, the Principal Component Analysis (PCA) and Non-Metric Multi-Dimensional Scaling (NMDS) indicated that fungal diversity was varied among the all three phases (T1, T2, and T3) and each treatment (R1 and R2). Finally, the results showed that different OLRs and HRT have significantly influenced the fungal community.
- Virginia Tech College of Natural Resources and Environment United States
- University of Borås Sweden
- North University of China China (People's Republic of)
- Virginia Tech College of Natural Resources and Environment United States
Sewage, Fungi, Refuse Disposal, Bioreactors, Food, Anaerobiosis, Methane
Sewage, Fungi, Refuse Disposal, Bioreactors, Food, Anaerobiosis, Methane
9 Research products, page 1 of 1
- 2019IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2004IsAmongTopNSimilarDocuments
- 2004IsAmongTopNSimilarDocuments
- 2014IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).30 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
