Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hydraulic characteristics simulation of an innovative self-agitation anaerobic baffled reactor (SA-ABR)

Authors: Yu You Li; Toshimasa Hojo; Wei Kang Qi;

Hydraulic characteristics simulation of an innovative self-agitation anaerobic baffled reactor (SA-ABR)

Abstract

An investigation was conducted on a self-agitation anaerobic baffled reactor (SA-ABR) with agitation caused solely by the release of stored gas. The compound in the reactor is mixed without the use of any mechanical equipment and electricity. The computational fluid dynamics (CFD) simulation used to provide details of the flow pattern and information about the agitation process and a solid basis for design and optimization purposes. Every self-agitation cycle could be separated into the pressure energy storage process, the exergonic process and the buffer stage. The reactor is regarded as the combination of continuous stirred tank reactor and a small plug flow reactor. The liquid level and diffusion varies widely depending on the length of the U-tube. The compound transition phenomenon in the 1st chamber mainly occurs during the energy exergonic process and buffer stage. The fluid-diffusion in the 3rd and 4th chambers mainly happens after the buffer period.

Related Organizations
Keywords

Bacteria, Equipment Design, Water Purification, Diffusion, Bioreactors, Inventions, Hydrodynamics, Computer Simulation, Anaerobiosis, Gases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%