
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Total Cooling Effectiveness on Laminated Multilayer for Impingement/Effusion Cooling System

Seon Ho Kim
doi: 10.1115/gt2014-26692
Total Cooling Effectiveness on Laminated Multilayer for Impingement/Effusion Cooling System
The next generation aircraft combustor liner will be operating in more severe conditions. This means that the current cooling system needs significant amounts of cooling air to maintain cooling intensity. The present study investigates experimentally the total cooling effectiveness of an integrated impingement/effusion cooling system (thin perforated laminate plate) and effusion cooling system (single plate) at the same blowing ratio of 0.2 to 1.2. The infrared thermography method was employed to evaluate total cooling effectiveness and to determine the fully developed region of cooling performance. The holes arrays on both plates are 13 × 13 and the centers formed a square pattern (i.e., an in-line array). The perforated laminate plate is constructed of three layers and pins that were installed between the layers. In order to avoid increasing the thickness and volume, the layer thickness-to-hole diameter ratio was 0.29, and the pin height-to-hole diameter ratio, which is equivalent to the gap between the plates, was 0.21. The single plate had the same total plate thickness-to-hole diameter, but was composed of only one layer. As a result, the total cooling effectiveness of the laminate plate is 47% ∼ 141% better than single plate depending on the blowing ratio. Also, a fully developed region appears on the 2nd or 3th row of holes.
- Agency for Defense Development Korea (Republic of)
- Yonsei University Korea (Republic of)
- Yonsei University Korea (Republic of)
- Agency for Defense Development Korea (Republic of)
- Yonsei University
12 Research products, page 1 of 2
- 2015IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2008IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2012IsAmongTopNSimilarDocuments
- 2005IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
