Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Total Cooling Effectiveness on Laminated Multilayer for Impingement/Effusion Cooling System

Authors: Hyung Hee Cho; orcid Seon Ho Kim;
Seon Ho Kim
ORCID
Harvested from ORCID Public Data File

Seon Ho Kim in OpenAIRE
Jun Su Park; Eui Yeop Jung; Kyeong Hwan Ahn; Ki Young Hwang;

Total Cooling Effectiveness on Laminated Multilayer for Impingement/Effusion Cooling System

Abstract

The next generation aircraft combustor liner will be operating in more severe conditions. This means that the current cooling system needs significant amounts of cooling air to maintain cooling intensity. The present study investigates experimentally the total cooling effectiveness of an integrated impingement/effusion cooling system (thin perforated laminate plate) and effusion cooling system (single plate) at the same blowing ratio of 0.2 to 1.2. The infrared thermography method was employed to evaluate total cooling effectiveness and to determine the fully developed region of cooling performance. The holes arrays on both plates are 13 × 13 and the centers formed a square pattern (i.e., an in-line array). The perforated laminate plate is constructed of three layers and pins that were installed between the layers. In order to avoid increasing the thickness and volume, the layer thickness-to-hole diameter ratio was 0.29, and the pin height-to-hole diameter ratio, which is equivalent to the gap between the plates, was 0.21. The single plate had the same total plate thickness-to-hole diameter, but was composed of only one layer. As a result, the total cooling effectiveness of the laminate plate is 47% ∼ 141% better than single plate depending on the blowing ratio. Also, a fully developed region appears on the 2nd or 3th row of holes.

Related Organizations
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?