
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Reaction mechanism of elemental mercury oxidation to HgSO4 during SO2/SO3 conversion over V2O5/TiO2 catalyst

Reaction mechanism of elemental mercury oxidation to HgSO4 during SO2/SO3 conversion over V2O5/TiO2 catalyst
Abstract Experiments and density functional theory calculations were conducted to uncover the reaction chemistry of Hg0 oxidation during SO2/SO3 conversion over V2O5/TiO2 catalyst. The results show that SO2 promotes Hg0 oxidation over V2O5/TiO2 catalyst with the assistance of oxygen. The promotional effect is dependent on the reaction temperature, and is associated with the bimolecular reaction between Hg0 and SO3 over V2O5/TiO2 catalyst. SO2 can be oxidized to SO3 which has high oxidation ability for Hg0 oxidation. SO2/SO3 conversion proceeds through a three-step reaction process in the sequence of SO2 adsorption → SO2 oxidation → SO3 desorption. SO2 oxidation presents an activation energy barrier of 223.84 kJ/mol. HgSO4 species is formed from the bimolecular reaction between Hg0 and SO3 over V2O5/TiO2 catalyst. Hg0 oxidation by SO3 over V2O5/TiO2 catalyst occurs through three reaction pathways, which are energetically favorable for HgSO4 formation. SO2* → SO3* is identified as the rate-determining step of HgSO4 formation. During Hg0 oxidation by SO3 over V2O5/TiO2 catalyst, HgSO4 desorption is a highly endothermic reaction process and requires a higher external energy. The proposed skeletal reaction network can be used to well understand the reaction mechanism of Hg0 oxidation during SO2/SO3 conversion over V2O5/TiO2 catalyst.
- Huazhong University of Science and Technology China (People's Republic of)
- State Key Laboratory of Coal Combustion China (People's Republic of)
- State Key Laboratory of Coal Combustion China (People's Republic of)
6 Research products, page 1 of 1
- 2007IsAmongTopNSimilarDocuments
- 2001IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2022IsAmongTopNSimilarDocuments
- 2014IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).30 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
