Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Advanced Materials R...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Advanced Materials Research
Article . 2011 . Peer-reviewed
License: Trans Tech Publications Copyright and Content Usage Policy
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Electromagnetic Interference of Ferrocene-Doped Carbon Fiber-Reinforced Cement Composites

Authors: Chuang Wang; Kezhi Li; Geng Sheng Jiao; Zhen Jun Wang;

Electromagnetic Interference of Ferrocene-Doped Carbon Fiber-Reinforced Cement Composites

Abstract

The reflectivity of ferrocene-doped carbon fiber-reinforced cement-matrix composites against the electromagnetic radiation was measured in the frequency range of 8-18 GHz for different carbon fiber contents of 0.4, 0.6, 0.89, 1.33, and 1.78 wt% by mass of cement. The ferrocene was doped in 0.89, 1.78, 3.56, 4.89, and 6.27 wt% by mass of cement respectively. The maximum reflectivity reached -4.0 dB when the fiber percentage was 0.89 and the ferrocene was 3.56. The microwave was attenuated by 64 % through reflection. The minimum reflectivity -7.5 dB occurred when the fiber percentage was 1.33 and the ferrocene percentage was 4.89. The microwave was attenuated by 67.5 % through absorption. Prior to the fiber percentage of 0.89 and the ferrocene percentage of 3.56, the reflectivity kept rising.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average