Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Proceedings of the I...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Advanced robust control techniques for the stabilization of translational oscillator with rotational actuator based barge-type OFWT

Authors: Syed Awais Ali Shah; Bingtuan Gao; Nigar Ahmed; Chuande Liu;

Advanced robust control techniques for the stabilization of translational oscillator with rotational actuator based barge-type OFWT

Abstract

In recent times, renewable energy demand is rapidly increasing worldwide. Offshore wind energy is one of the alternative solutions to the problems posed by non-renewable energy resources. The kinetic energy of the wind is converted to mechanical energy by using an offshore floating wind turbine (OFWT). The efficiency of the OFWT is dependent upon the vibrational effect induced by the environment. In this paper, for the mitigation of this vibrational effect, a new model of barge-type OFWT is designed by using an active control strategy called translational oscillator with a rotational actuator (TORA). The disturbance observer (DO) based advanced control techniques including robust backstepping sliding mode control (BSMC), backstepping integral sliding mode control (BISMC), backstepping nonsingular terminal sliding mode control (BNTSMC), and a new backstepping integral nonsingular terminal sliding mode control (BINTSMC) technique, are devised for the stabilization of OFWT model. The comparison of these techniques is carried out by using MATLAB/SIMULINK which validates the feasibility and correctness of the proposed OFWT model and control techniques.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average