
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An extended radar relative calibration adjustment (eRCA) technique for higher-frequency radars and range–height indicator (RHI) scans

An extended radar relative calibration adjustment (eRCA) technique for higher-frequency radars and range–height indicator (RHI) scans
Abstract. This study extends the relative calibration adjustment technique for calibration of weather radars to higher-frequency radars as well as range–height indicator (RHI) scans. The calibration of weather radars represents one of the most dominant sources of error for their use in a variety of fields including quantitative precipitation estimation and model comparisons. While most weather radars are routinely calibrated, the frequency of calibration is often less than required, resulting in miscalibrated time periods. While full absolute calibration techniques often require the radar to be taken offline for a period of time, there have been online calibration techniques discussed in the literature. The relative calibration adjustment (RCA) technique uses the statistics of the ground clutter surrounding the radar as a monitoring source for the stability of calibration but has only been demonstrated to work at S- and C-band for plan-position indicator (PPI) scans at a constant elevation. In this work the RCA technique is modified to work with higher-frequency radars, including Ka-band cloud radars. At higher frequencies the properties of clutter can be much more variable. This work introduces an extended clutter selection procedure that incorporates the temporal stability of clutter and helps to improve the operational stability of RCA for relatively higher-frequency radars. The technique is also extended to utilize range–height scans from radars where the elevation is varied rather than the azimuth. These types of scans are often utilized with research radars to examine the vertical structure of clouds. The newly extended technique (eRCA) is applied to four Department of Energy Atmospheric Radiation Measurement (DOE ARM) weather radars ranging in frequency from C- to Ka-band. Cross comparisons of three co-located radars with frequencies C, X, and Ka at the ARM Cloud, Aerosol, and Complex Terrain Interactions (CACTI) site show that the technique can determine changes in calibration. Using an X-band radar at the ARM Eastern North Atlantic (ENA) site, we show how the technique can be modified to be more resilient to clutter fields that show increased variability, in this case due to sea clutter. The results show that this technique is promising for a posteriori data calibration and monitoring.
- Pacific Northwest National Laboratory United States
- Pacific Northwest National Laboratory United States
Earthwork. Foundations, TA715-787, Environmental engineering, TA170-171
Earthwork. Foundations, TA715-787, Environmental engineering, TA170-171
2 Research products, page 1 of 1
- IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
