Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2019
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fe3O4-PDA-Lipase as Surface Functionalized Nano Biocatalyst for the Production of Biodiesel Using Waste Cooking Oil as Feedstock: Characterization and Process Optimization

Authors: Tooba Touqeer; Muhammad Waseem Mumtaz; Hamid Mukhtar; Ahmad Irfan; Sadia Akram; Aroosh Shabbir; Umer Rashid; +2 Authors

Fe3O4-PDA-Lipase as Surface Functionalized Nano Biocatalyst for the Production of Biodiesel Using Waste Cooking Oil as Feedstock: Characterization and Process Optimization

Abstract

Synthesis of surface modified/multi-functional nanoparticles has become a vital research area of material science. In the present work, iron oxide (Fe3O4) nanoparticles prepared by solvo-thermal method were functionalized by polydopamine. The catechol groups of polydopamine at the surface of nanoparticles provided the sites for the attachment of Aspergillus terreus AH-F2 lipase through adsorption, Schiff base and Michael addition mechanisms. The strategy was revealed to be facile and efficacious, as lipase immobilized on magnetic nanoparticles grant the edge of ease in recovery with utilizing external magnet and reusability of lipase. Maximum activity of free lipase was estimated to be 18.32 U/mg/min while activity of Fe3O4-PDA-Lipase was 17.82 U/mg/min (showing 97.27% residual activity). The lipase immobilized on polydopamine coated iron oxide (Fe3O4_PDA_Lipase) revealed better adoptability towards higher levels of temperature/pH comparative to free lipase. The synthesized (Fe3O4_PDA_Lipase) catalyst was employed for the preparation of biodiesel from waste cooking oil by enzymatic transesterification. Five factors response surface methodology was adopted for optimizing reaction conditions. The highest yield of biodiesel (92%) was achieved at 10% Fe3O4_PDA_Lipase percentage concentration, 6:1 CH3OH to oil ratio, 37 °C temperature, 0.6% water content and 30 h of reaction time. The Fe3O4-PDA-Lipase activity was not very affected after first four cycles and retained 25.79% of its initial activity after seven cycles. The nanoparticles were characterized by FTIR (Fourier transfer infrared) Spectroscopy, XRD (X-ray diffraction) and TEM (transmission electron microscopy), grafting of polydopamine on nanoparticles was confirmed by FTIR and formation of biodiesel was evaluated by FTIR and GC-MS (gas chromatography-mass spectrometry) analysis.

Country
Malaysia
Keywords

Technology, T, rsm, biodiesel, 540, biodiesel; transesterification; <i>Aspergillus terreus</i> lipase; polydopamine; immobilization; RSM; fuel properties, transesterification, fuel properties, <i>aspergillus terreus</i> lipase, immobilization, polydopamine

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    78
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
78
Top 1%
Top 10%
Top 1%
gold