
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
IN100 Ni-based superalloy fabricated by micro-laser aided additive manufacturing: Correlation of the microstructure and fracture mechanism

IN100 Ni-based superalloy fabricated by micro-laser aided additive manufacturing: Correlation of the microstructure and fracture mechanism
Abstract IN100 Ni-based superalloy fabricated by micro-laser aided additive manufacturing (micro-LAAM) was investigated in this study. After solution treatment and aging (STA) of the micro-LAAMed IN100 alloy, hierarchical γ′ phases were recognized and characterized, which contributed significantly to the high ultimate tensile strength (~1050 MPa) and acceptable ductility (5%) at 25 °C and 600 °C. The tensile fractured surfaces of the as-built and STAed IN100 were characterized by dimples and dimples/cleavages, respectively. The high cycle vibration fatigue (HCVF) behavior was preliminarily studied through simulating the service conditions of some cantilever structures in automobile and aerospace industries. Compared with the cast IN100, the micro-LAAMed IN100 superalloys (as-built or STAed) both exhibited inferior HCVF lives. The HCVF behavior was discussed and correlated with the microstructure characteristics, such as the preferred growth direction of the grains in micro-LAAMed IN100 and the massive interfaces existing in the final obtained material. In the present study, the hierarchical γ′ phases were beneficial to the static tensile property, whereas detrimental to the HCVF behavior of the final obtained IN100 to some extent.
- Singapore Institute of Manufacturing Technology Singapore
- Beijing University of Civil Engineering and Architecture China (People's Republic of)
- Agency for Science, Technology and Research Singapore
- Singapore Institute of Manufacturing Technology Singapore
- Beijing University of Civil Engineering and Architecture China (People's Republic of)
10 Research products, page 1 of 1
- 2021IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2014IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2011IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).16 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
