Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Pflügers Archiv - Eu...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Pflügers Archiv - European Journal of Physiology
Article . 1989 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Macula densa cells sense luminal NaCl concentration via furosemide sensitive Na+2Cl?K+ cotransport

Authors: E. Schlatter; A. E. G. Persson; Rainer Greger; M. Salomonsson;

Macula densa cells sense luminal NaCl concentration via furosemide sensitive Na+2Cl?K+ cotransport

Abstract

The macula densa cells of the juxtaglomerular apparatus probably serve as the sensor cells for the signal which leads to the appropriate tubuloglomerular feedback response. The present study reports basolateral membrane voltage (PDbl) measurements in macula densa cells. We isolated and perfused in vitro thick ascending limb segments with the glomerulus, and therefore the macula densa cells, and the early distal tubule still attached. Macula densa cells were impaled with microelectrodes under visual control. PDbl was recorded in order to examine how these cells sense changes in luminal NaCl concentrations. The addition of furosemide, a specific inhibitor of the Na+2Cl-K+ cotransporter in the thick ascending limb, to the lumen of the perfused thick ascending limb hyperpolarized PDbl from -55 +/- 5 mV to -79 +/- 4 mV (n = 7). Reduction of NaCl in the lumen perfusate from 150 mmol/l to 30 mmol/l also hyperpolarized PDbl from -48 +/- 3 mV to -66 +/- 5 mV (n = 4). A Cl- concentration step in the bath from 150 mmol/l to 30 mmol/l resulted in a 24 +/- 4 mV (n = 4) depolarization of PDbl. This depolarization of PDbl was absent when furosemide was present during the Cl- concentration step. These data suggest that the macula densa cells sense changes in luminal NaCl concentration via coupled uptake of Na+ and Cl-.(ABSTRACT TRUNCATED AT 250 WORDS)

Related Organizations
Keywords

Cell Membrane Permeability, Symporters, Cell Membrane, Sodium, Biological Transport, Sodium Chloride, Sodium Chloride Symporters, Juxtaglomerular Apparatus, Membrane Potentials, Chlorides, Furosemide, Potassium, Animals, Female, Rabbits, Carrier Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    183
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
183
Top 10%
Top 1%
Top 10%