Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://digital.libr...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Silicon-Film{trademark} photovoltaic manufacturing technology. Semiannual subcontract report, 15 October 1993--15 April 1994

Authors: Collins, S. R.; Hall, R. B.;

Silicon-Film{trademark} photovoltaic manufacturing technology. Semiannual subcontract report, 15 October 1993--15 April 1994

Abstract

This report describes work to develop an advanced, low-cost manufacturing process for a now utility-scale, flat-plate module. This process starts with the production of continuous sheets of thin-film, polycrystalline silicon using the Silicon-Film{trademark} process. Sheets are cut into wafers that are nominally 15 cm on a side. Fifty-six of these wafers are then fabricated into solar cells that are strung together into a 170-W module. Twelve of these modules form a 2-kW array. The program has three main components: (1) development of a Silicon-Film{trademark} wafer machine that is capable of manufacturing waters that are 225 cm{sup 2} in size at a rate of 3.0 MW/yr, with a total product cost reduction of 70%; (2) development of an advanced solar cell manufacturing process that is capable of turning the Silicon-Film{trademark} wafer into a 3.25-W solar cell; and (3) development of an advanced module design based on these large-area silicon solar cells with an average power of 170 W for 56 solar cells and 113 W for 36 solar cells.

Country
United States
Related Organizations
Keywords

Research Programs, Thin Films, Silicon 140501, Manufacturing, Photovoltaic Conversion, Progress Report, 14 Solar Energy, Solar Cell Arrays, 530, Silicon Solar Cells, 620

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities