
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Dispatching Stochastic Heterogeneous Resources Accounting for Grid and Battery Losses

Dispatching Stochastic Heterogeneous Resources Accounting for Grid and Battery Losses
We compute an optimal day-ahead dispatch plan for distribution networks with stochastic resources and batteries, while accounting for grid and battery losses. We formulate and solve a scenario-based AC Optimal Power Flow (OPF), which is by construction non-convex. We explain why the existing relaxation methods do not apply and we propose a novel iterative scheme, corrected DistFlow (CoDistFlow), to solve the scenario-based AC OPF problem in radial networks. It uses a modified branch flow model for radial networks with angle relaxation that accounts for line shunt capacitances. At each step, it solves a convex problem based on a modified DistFlow OPF with correction terms for line losses and node voltages. Then, it updates the correction terms using the results of a full load flow. We prove that under a mild condition, a fixed point of CoDistFlow provides an exact solution to the full AC power flow equations. We propose treating battery losses similarly to grid losses by using a single-port electrical equivalent instead of battery efficiencies. We evaluate the performance of the proposed scheme in a simple and real electrical networks. We conclude that grid and battery losses affect the feasibility of the day-ahead dispatch plan and show how CoDistFlow can handle them correctly.
- École Polytechnique Fédérale de Lausanne EPFL Switzerland
Dispatch plan, day-ahead, battery models, [SPI.NRJ]Engineering Sciences [physics]/Electric power, grid losses, epfl-smartgrids, optimal power flow
Dispatch plan, day-ahead, battery models, [SPI.NRJ]Engineering Sciences [physics]/Electric power, grid losses, epfl-smartgrids, optimal power flow
7 Research products, page 1 of 1
- 2020IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2023IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).39 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
