Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Remote Sensing of En...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Remote Sensing of Environment
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Improved detection of low stratus and fog at dawn from dual geostationary (COMS and FY-2D) satellites

Authors: Gyo Hwang Choo; Dong L. Wu; Dong L. Wu; Jun Dong Park; Jung Hyun Yang; Dong Bin Shin; Jin Hee Jeong; +4 Authors

Improved detection of low stratus and fog at dawn from dual geostationary (COMS and FY-2D) satellites

Abstract

Abstract A novel method was proposed to detect low stratus and fog (LSF) at dawn during the summertime using near-simultaneous observations from dual geostationary-orbit satellites (GEOs): the Korean Communication, Ocean and Meteorological Satellite (COMS; 128.2°E) and the Chinese Feng-Yun-2D (FY-2D; 86.5°E). The orbital positions of the GEOs provided a large difference (~46.5°) in the viewing zenith angle (VZA) in the study region (122–132°E, 32.5–42.5°N) and high contrast observations at dawn. Numerical simulations were carried out to derive the optical properties of the LSF and the radiative differences between the GEOs due to both the VZA and spectral response function (SRF). The conventional threshold method, which used the visible reflectance at 0.67 μm (R0.67) and the brightness temperature difference between 3.7 μm and 11 μm (BTD3.7–11), had limitations in detecting LSF at dawn due to weak visible light and fast night-to-day transition. We utilized the observed stereo differences (ΔR0.67, ΔBTD3.7–11) between the two GEOs to improve LSF detection. The dual-satellite observations were verified with ground-based data from 45 stations in South Korea co-located with each GEO pixel. The ΔR0.67 threshold value showed better accuracy (78% vs. 67%) than the conventional R0.67 threshold method. In addition, the ΔBTD3.7–11 threshold was better (55% vs. 38%) than the BTD3.7–11 threshold. The dual-satellite method allowed more reliable LSF detection using the combination of ΔR0.67 and R0.67, particularly for LSF without cumuliform or high clouds. Our method is applicable to multiple geostationary satellites for continuous LSF monitoring.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Average