
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A decentralized cooperative actuator fault accommodation of formation flying satellites in deep space
A decentralized cooperative actuator fault accommodation of formation flying satellites in deep space
In this paper, a new fault accommodation framework that is based on a decentralized cooperative scheme is proposed for formation flying satellites. A low-level fault recovery (LLFR) module uses conventional estimation techniques to determine the severity of a fault. It then activates a recovery controller (RC) to accomplish the design specifications. Due to existence of a biased estimate of the fault, a high-level (HL) supervisor will detect any possible violations of the performance specifications, and consecutively activates the formation-level fault recovery (FLFR) module. This module compensates for performance degradations of the faulty satellite by requiring that the healthy satellites do allocate additional resources. Consequently, our proposed cooperative architecture recovers the fault while the decentralized control requirements and the error performance specifications are satisfied. Simulation results presented confirm the effectiveness of our proposed analytical work.
- Concordia University Canada
- University of Chicago United States
6 Research products, page 1 of 1
- 2010IsAmongTopNSimilarDocuments
- 2012IsAmongTopNSimilarDocuments
- 2009IsAmongTopNSimilarDocuments
- 2011IsAmongTopNSimilarDocuments
- 2008IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
